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Abstract—Machine-learning models for security-critical appli-
cations such as bot, malware, or spam detection, operate in
constrained discrete domains. These applications would benefit
from having provable guarantees against adversarial examples.
The existing literature on provable adversarial robustness of
models, however, exclusively focuses on robustness to gradient-
based attacks in domains such as images. These attacks model the
adversarial cost, e.g., amount of distortion applied to an image,
as a p-norm. We argue that this approach is not well-suited to
model adversarial costs in constrained domains where not all
examples are feasible.

We introduce a graphical framework that (1) generalizes ex-
isting attacks in discrete domains, (2) can accommodate complex
cost functions beyond p-norms, including financial cost incurred
when attacking a classifier, and (3) efficiently produces valid
adversarial examples with guarantees of minimal adversarial cost.
These guarantees directly translate into a notion of adversarial
robustness that takes into account domain constraints and the
adversary’s capabilities. We show how our framework can be
used to evaluate security by crafting adversarial examples that
evade a Twitter-bot detection classifier with provably minimal
number of changes; and to build privacy defenses by craft-
ing adversarial examples that evade a privacy-invasive website-
fingerprinting classifier.

I. INTRODUCTION

Many classes of machine-learning (ML) models are vulner-
able to efficient gradient-based attacks that cause classification
errors at test time [1–7]. A large body of work has been
dedicated to obtaining provable guarantees of adversarial
robustness of ML classifiers against such attacks [8–13].
These works focus exclusively on continuous domains such as
images, where an attacker adds small perturbations to regular
examples such that the resulting adversarial examples cause
a misclassification. Their definition of robustness is that the
classifier’s decision is stable in a certain Lp-neighbourhood
around a given example, i.e., perturbations having an Lp norm
lower than a threshold cannot flip the decision of the classifier.

Security-critical applications of machine learning such as
bot, malware, or spam detection rely on feature vectors whose
values are constrained by the specifics of the problem. In these
settings, adding small perturbations to examples could result
in feature vectors that cannot appear in real life [14–17]. For
example, perturbing a malware binary to prevent antivirus
detection could turn the binary non-executable; or perturbing a
text representation to change the output of a classifier [18] could
cause the representation to not correspond to any plausible text

in terms of semantics or grammar. Hence, the techniques for
evaluating robustness against perturbation-based adversaries
are not straightforward to apply to these cases.

This shows a significant gap in the literature. On one hand,
multiple methods and tools have been proposed to either
evaluate such measures of robustness, or train robust models.
On the other hand, many security-critical domains—that could
benefit from such tools—cannot effectively use them, as the
measures do not easily translate to discrete domains.

We introduce a framework for efficiently finding adversarial
examples that is suitable for constrained discrete domains. We
represent the space of possible adversarial manipulations as a
weighted directed graph, called a transformation graph. Starting
from a regular example, every edge is a transformation, its
weight being the transformation cost, and the children nodes
are transformed examples.

This representation has the following advantages. First,
explicitly defining the descendants for each node captures
the feasibility constraints of the domain: the transitive closure
for a given starting node represents the set of all possible
transformations of that example. Second, the graph can capture
non-trivial manipulation-cost functions: the cost of a sequence
of manipulations can be modeled as the sum of edge weights
along a path from the original to the transformed example.
Third, the graph representation is independent of the ML model
being attacked, and of the adversary’s knowledge of this model.
Thus, it applies to different adversarial settings. Fourth, this
framework is a generalization of many existing attacks in
discrete domains [4, 15, 16, 19–23]. This makes it a useful
tool for comparing attacks and characterizing the attack space.

An additional advantage of the graphical approach is
that it enables us to use well-known algorithms for graph
search in order to find adversarial examples. Concretely, in a
white-box setting, an adversary can use the A∗ graph-search
algorithm to find adversarial examples that are optimal in
terms of transformation cost, i.e., with minimal adversarial
cost guarantees. Note that we use the term adversarial cost to
represent the effort an adversary applies to mount an attack [24].
Works on cost-sensitive adversarial robustness [25, 26] use
the term cost in a different sense—to represent the harm an
adversary causes with different kinds of misclassifications in a
multi-class setting—and, hence, are orthogonal to our work.

Being able to obtain constrained adversarial examples with
provably minimal costs has key implications for security.
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The minimal adversarial cost guarantee naturally extends
the notion of adversarial robustness in an Lp-neighbourhood
to constrained discrete domains. Furthermore, our approach
enables the evaluation of adversarial robustness under realistic
tangible cost functions. For instance, we show how to measure
robustness in terms of economical cost, i.e., guaranteeing that
the adversary needs to pay a certain financial price in order to
change the decision of the classifier.

Using A∗ search to find minimal-cost adversarial examples
requires to compute a heuristic based on a measure of
adversarial robustness in a Lp-neighbourhood over a continuous
superset of the domain. Hence, we establish the following
connection: if adversarial robustness of a classifier can be
computed in a Lp-neighborhood in a continuous domain, it can
also be computed in a discrete domain using our framework. If
computing robustness in the continuous domain is expensive,
we show how efficient sub-optimal instantiations of A∗ can be
used to still obtain optimality guarantees on the costs.

The graphical framework and the provable guarantees it
enables to obtain are also useful in privacy applications.
Machine learning is widely used to infer private information
about users [27–29], track people [30], and learn about
their browsing behaviour [31, 32]. Defenses against such
attacks are non-existent or predominantly ad-hoc (e.g., for
de-anonymization attacks [33–37]). With the exception of the
work by Jia and Gong on hindering profiling based on app
usage [16], the privacy community has so far not considered the
use of evasion attacks as systematic means to counteract privacy-
invasive classifiers. As many of the domains in which privacy-
invasive classifiers operate are discrete, our framework opens
the door to the principled design of privacy defenses against
such classifiers. Moreover, the minimal cost guarantee provides
a lower bound on the costs of a defense. Thus, it provides
a good baseline for benchmarking the cost-effectiveness of
existing privacy defenses against machine learning.

In summary, these are our contributions:

• We present a graphical framework that systematizes the
crafting of adversarial examples in constrained discrete
domains. It generalizes many existing crafting methods.

• We show how to use the framework to measure adver-
sarial robustness considering the domain constraints and
the adversary’s capabilities. Our framework can handle
arbitrary costs beyond the commonly-used Lp norms to
express the adversarial costs.

• We show how the A∗ graph search algorithm can be used
to efficiently obtain minimal-cost adversarial examples,
thus to provide provable guarantees of robustness against
a given model of adversarial capabilities.

• We identify and formally prove the connection between
adversarial robustness in continuous and discrete domains:
if the robustness can be computed in the continuous
domain, it can also be computed in a discrete domain.

• We show how our framework can be used as a tool to
systematically build and evaluate privacy defenses against
privacy-invasive ML classifiers.

II. A GRAPH SEARCH APPROACH TO EVASION

After some preliminaries, we introduce our graphical frame-
work for designing evasion attacks.

A. Preliminaries

Throughout the paper we denote vectors in Rm using bold
face: x. We denote by a · b a dot product between two vectors.

1) Binary Classifiers: In this work, we focus on binary
classifiers, F : X→ {0, 1} that produce a decision {0, 1} by
thresholding a discriminant function f(x):

F (x) =

{
1, f(x) > θ

0, otherwise

where θ ∈ R is a decision threshold. The discriminant function
f(x) = w · φ(x) + b is a composition of a possibly non-
linear feature mapping φ : X → Rm from some input space
X to a feature space Rm, and a linear function w · z + b
with z = φ(x). This encompasses several families of models
in machine learning, including logistic regression, SVM, and
neural network-based classifiers. In the rest of this paper we
use the terms classifier and model interchangeably.

Often, the decision threshold is defined through a confidence
value d ∈ [0, 1] such that d = σ(θ), that is, θ = σ−1(d), where
σ : R→ [0, 1] is a sigmoid function:

σ(y) =
1

1 + e−y

Binary classifiers are often employed in security settings
for detecting security violations. Some standard examples are
spam, fraud, bot, or network-intrusion detection.

2) Graph Search: Let G = (V,E, ω) be a directed weighted
graph, where V is a set of nodes, E is a set of edges, and
ω : E → R+ associates each edge with a weight, or edge cost.
For a given path x1 → x2 → . . .→ xn in the graph, we define
the path cost as the sum of its edges’ costs:

W (x1 → x2 → . . .→ xn) =

n−1∑
i=1

ω(xi, xi+1).

Let goal : V → {>,⊥} be a goal predicate. For a given
starting node s ∈ V a graph search algorithm aims to find a
node g ∈ V that satisfies goal(g) = > such that the cost of
reaching g from s is minimal:

g = arg min
v∈V

CG(s, v) s.t. goal(v) = >,

where CG(x, x′) is defined as the minimal path cost over all
paths in graph G from s to v:

CG(s, v) = min
vi∈V

W (s→ v1 → . . .→ vn−1 → v)

s.t. (s, v1), (vn−1, v), (vi, vi+1) ∈ E ∀i ∈ 1, n− 1
(1)

We call a global minimizer g an optimal, or admissible,
solution to the graph search problem.

In Algorithm 1, we show the pseudocode of the BF∗

graph-search algorithm [38]. Some common graph-search
algorithms are specializations of BF∗: uniform-cost search
(UCS) [39], greedy best-first search [40], A∗ and some of
its variants [39, 41]. They differ in their instantiation of the
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Algorithm 1 BF∗ search algorithm

Require: Priority queue data structure pqueue
Require: Directed graph G = (V,E, ω)
Require: Scoring function score : V × V → R
Require: Goal predicate goal : V → {0, 1}
Require: Starting node s ∈ V

1: function BF∗(G, score(·), goal(·); s)
2: OPEN ← pqueue({s})
3: CLOSED ← {}
4: while OPEN is not empty do
5: v ← remove node with lowest f -score from OPEN
6: if goal(v) then return v

7: CLOSED ← CLOSED ∪ {v}
8: for each child v′ of v in G do
9: score-value ← score(v, v′)

10: if v′ not in OPEN or CLOSED then
11: Record v′ in OPEN with score-value
12: if v′ is in OPEN or CLOSED and score-value

is lower than recorded then
13: Replace v′ with the updated
14: score-value in the respective set
15: if v′ is in CLOSED then
16: Move v′ to OPEN

TABLE I: Specializations of BF∗. h : V → R is a heuristic
function that estimates the path cost to reach a goal node.

Algorithm score

Greedy best-first [40] h(v′)
Uniform-cost [39] ω(v, v′)
A∗ [39] ω(v, v′) + h(v′)
ε-weighted A∗ [41] ω(v, v′) + εh(v′)

Algorithm pqueue

Hill climbing Limited to one best-scoring item
Beam search [42] Limited to B best-scoring items

scoring function used to select the best nodes at each step of
the algorithm. Additionally, by limiting the number of items
in the data structure holding candidate nodes, beam-search
and hill-climbing variations of the above algorithms can be
obtained [42]. We summarize these differences in Table I.

B. The Graphical Framework

1) The Adversary’s Strategy and Goal: We assume the
adversary relies on the “mimicry” strategy [14] to evade an
ML classifier: Departing from a known initial example x, the
adversary applies structure-preserving transformations until a
transformed adversarial example, x′, is misclassified.

The adversary also wants to minimize the cost of these
transformations. This problem is often formulated as an
optimization problem:

x∗ = arg min
x′∈X

C(x, x′) s.t. goal(x′) = >, (2)

where x is the initial example, and C(x, x′) > 0 is the
adversarial cost. C models the “price” that the adversary pays
to transform example x into x′. The adversary’s goal in this
problem is to cause a misclassification error with a certain
confidence level l ≥ d:

goal(x′) =


>, t = 1 and σ(f(x′)) > l

>, t = 0 and σ(f(x′)) ≤ 1− l
⊥, otherwise

(3)

where t is the target class which is different from the original
class F (x) (if F (x) = 0, then t = 1, and vice-versa).

If l is equal to the decision threshold of the classifier, l = d,
the adversary merely aims to flip the decision. The adversary
might also want not only to flip the decision, but to make
adversarial examples that are classified with higher confidence.
This corresponds to higher confidence levels: l > d.

2) The Adversary’s Knowledge: Following standard prac-
tices for evaluating security properties of ML models, we
assume the worst-case, white-box, adversary that has full
knowledge of the target model parameters, including w, b
and the feature mapping φ. In Section IV-B we also discuss
attacks that are applicable to a black-box setting, where the
adversary does not have knowledge of the model parameters
or architecture, but can query it with arbitrary examples x to
obtain f(x).

3) The Adversary’s Capabilities: We model the capabilities
of the adversary, including inherent domain constraints and
the cost of modifications, using a transformation graph that
encodes the transformations the adversary can perform on an
example x. This graph has to be defined before running the
attack.

The transformation graph is a directed weighted graph G =
(V,E, ω), with V ⊆ X being a subset of the model’s input space
that the adversary can craft. An edge (x, x′) ∈ E represents the
transformation of an example x into an example x′. For each
edge (x, x′) ∈ E the function ω defines the cost ω(x, x′) >
0 associated with that transformation. A path cost C(x1 →
x2 → . . .→ xn) represents the cost of performing a chain of
transformations x1 → x2 → . . .→ xn.

4) Graphical Formulation: Within the graphical framework,
the problem in Equation 2 is reduced to minimizing the
transformation cost as defined by the graph G, thus narrowing
the search space to only those x′ that are reachable from x:

x∗ = arg min
x′∈V

CG(x, x′)

s.t. goal(x′) = >
x′ is reachable from x in G

(4)

Example 1. Consider a toy Twitter-bot detection classifier that
takes as input the days since the account was created, and the
total number of replies to the tweets made by this account, and
outputs a binary decision: bot or not. Starting from an arbitrary
account, the adversary wants to create a bot that evades the
detector by only modifying these two features. To save time
and money the adversary wants to keep these modifications to
a minimum.

In this setting, the transformation graph can be built as
follows. For each feature vector v ∈ V representing an account,
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there exist up to four children in the graph: an example with
the value of the number of days since account creation feature
incremented by one, or decremented by one, and analogously
two children for the number of replies to the tweets. Let all
edges have cost 1. In such a graph, the cost of a transformation
chain is the number of edges traversed, e.g., incrementing the
number of days since account creation by three is equivalent
to a path with three edges (the path cost is 3). The adversary’s
goal is to find the path with the lowest cost (minimal number of
transformations) that flips the classifier’s decision. The resulting
account is the solution to Equation 4.

C. Provable Optimality Guarantees

For a given adversary model, and an initial example x, we
define c∗ as the minimal cost of the transformations needed to
achieve a misclassification goal:

c∗ = min
x′∈V

CG(x, x′) s.t. goal(x′) = >

The minimal c∗, or a tight lower bound on c∗, for a given x
is a measure of adversarial robustness of the model, equivalent
to the notion of pointwise adversarial robustness [8, 43], and
minimal adversarial cost (MAC) [24].

The MAC can be used to quantify the security of models:
the more secure a model is, the higher the cost of successfully
mounting an evasion attack. In Section IV-A we illustrate this
idea in the context of an ML classifier for Twitter-bot detection,
usign c∗ to evaluate the security.

Finding the globally optimal c∗ could be computationally
expensive. A tight upper bound on c∗, however, is easier to
find in practice. In Section IV-B we use upper bounds on c∗ to
evaluate the effectiveness of evasion attacks as privacy defenses
against traffic analysis.

III. PROVABLY MINIMAL-COST ATTACKS USING
HEURISTIC GRAPH SEARCH

One way to find an optimal, or admissible, solution to
the graph-search problem in Equation 4 is to use uniform-
cost search (see Section II). This approach, however, can be
inefficient or even infeasible. For example, let us consider the
transformation graph in Example 1, where the branching factor
is 4. Assuming that at most 30 decrements or increments can
be performed to any of the features, the number of nodes in this
graph is bounded by n = 430 = 260. Given that uniform-cost
search (UCS) needs to expand n nodes in the worst case, if
a single expansion takes a nanosecond, a full graph traversal
would take 36 years.

For certain settings, however, it is possible to use heuristics
to identify the best direction in which to traverse the graph,
escaping the combinatorial explosion through the usage of
heuristic search algorithms like A∗ (see Section II-A2). To
ensure that these algorithms find the admissible x∗ it is
sufficient that the heuristic is admissible [38]:

Definition III.1 (Admissible heuristic). Let G = (V,E, ω) be
a weighted directed graph with ω(v, v′) ≥ 0. A heuristic h(v)
is admissible if for any v ∈ V and any goal node g ∈ V it
never overestimates the CG(v, g): h(v) ≤ CG(v, g).

In general, admissibility does not guarantee that A∗ runs
in an optimally efficient way. To guarantee optimality in
terms of efficiency the heuristic must be consistent, a stronger
property [38].

A. Optimal Instantiation

We detail one setting for which there exists an admissible
heuristic for the adversarial example search problem. Let the
input domain X be a discrete subset of the vector space Rm,
and let the cost of an edge (x,x′) in the transformation graph
be a norm-induced metric between examples x and x′:

ω(x,x′) = ‖x− x′‖ ,

Let S ⊆ Rm be a superset of X, e.g., a continuous closure
of a discrete X. Let r(x) denote the minimal adversarial cost
of the classifier at input x with respect to cost ‖x− x′‖ over
the search space S. Because the search space is a subset of
Rm, r can be simplified from Equation 2 to the following:

r(x) = min
∆∈S
‖∆‖ s.t. goal(x + ∆) = >, x + ∆ ∈ S (5)

Any lower bound η(x) on r(x) over any S such that X ⊆ S,
can be used to construct an admissible heuristic h(x):

h(x) =

{
η(x), goal(x′) 6= >
0, otherwise

(6)

If x is not already classified as the target class t, this
heuristic returns the lower bound on the MAC, η(x). When
x is classified as the target class, i.e., x is already on the
other side of the decision boundary, the heuristic returns 0.
The heuristic h is admissible because it returns a lower bound
on the path cost from an example x to any adversarial example
x∗.

Statement III.1 (Admissibility of h). Let the transformation
graph G = (V,E, ω) have ω(a, b) = ‖a− b‖, and the initial
example be x ∈ V ⊆ Rm. Then h is an admissible heuristic
for the graph search problem from Equation 4. (Proof in
Appendix A)

In the rest of the paper, we use r(x), η(x) and “heuristic”
interchangeably, as r(x) or η(x) unambiguously define the
heuristic h(x) through Equation 6.

We note that in many domains, and in particular in non-image
domains, the transformation cost for different features might
not be equally distributed. Statement III.1 holds for any norm.
Hence, the edge cost can be instantiated with weighted norms
to capture differences in adversarial cost between features. We
note that, regardless of the cost model, the structure of the
transformation graph can encode more complex cost functions
than Lp distances between vectors, as we demonstrate in
Section IV-A.

B. Computing the Heuristic

1) Linear Models: The MAC r(x) over a continuous Rm

is equivalent to the standard notion of pointwise adversarial
robustness, and can be computed efficiently for linear models.
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Fig. 1: An admissible heuristic for graph search. Circles
represent feasible examples X, with X ⊂ S = R2 being a
subset of 2-dimensional Euclidean space. The color and a plus
or minus shows the true class of an example. Arrows represent
transformations in G, with the length of the arrow being the
L2 cost of the transformation. Pointwise robustness r2(x) over
S is the L2 distance from point x to the decision boundary
defined by the target model f(x) = w ·x+ b. The value of an
admissible heuristic is r2(x) for all x not classified as target
class (−), and zero for the other ones.

When the target model is a linear model, φ(x) = x, r(x) is
a distance from x to the hyperplane defined by the discriminant
function (see Figure 1), and has a closed form:

r(x) =
|w · x + b|
‖w‖∗ =

|f(x)|
‖w‖∗ , (7)

where ‖w‖∗ is the dual norm corresponding to ‖w‖ [44, 45]. If
the edge cost is induced by an Lp norm, ω(a, b) = ‖a− b‖p,
the denominator ‖w‖∗ is ‖w‖q, where q is the Hölder
conjugate of p: 1

p + 1
q = 1.

2) Non-Linear Models: For some models, r(x) can be
either computed using formal methods [8, 9, 46], or bounded
analytically, yielding a lower bound η(x) [10, 13, 47]. Ex-
isting methods usually perform the computation over a box-
constrained S = I1 × I2 × · · · × Im for some contiguous
intervals Ij ⊂ R, and are only applicable to Lp norm-based
costs. These methods are much more expensive to compute
than the closed-form solution for linear models above.

3) Bounded Relaxations: A number of works explore
bounded relaxations of the admissibility properties of A∗ search,
aiming to trade off admissibility guarantees for computational
efficiency [41, 48–50]. In this paper, we employ static weight-
ing [41] for its simplicity. In this approach, the heuristic value
is multiplied by ε > 1. This results in adversarial examples
that have at most ε times higher cost than MAC.

IV. EXPERIMENTAL EVALUATION

We evaluate the graph search approach for finding adversarial
examples as means to evaluate the security of an ML model
by computing its robustness against adversarial examples, and

as means to build efficient defenses against privacy-invasive
ML models. We use two ML applications that work with
constrained discrete domains: a bot detector in a white-box
setting, where it is possible to use A∗ with admissible heuristics
to obtain provably minimal-cost adversarial examples, and a
traffic-analysis ML classifier in a black-box setting, where we
obtain upper bounds on the minimal adversarial cost.

a) Implementation: We use scikit-learn [51] for training
and evaluation of ML models, and Jupyter notebooks [52] for
visualizations. The reported runtimes come from executions
on a machine with Intel i7-7700 CPU working at 3.60GHz.
The code to run the attacks is available as a Python package;
all experiments are reproducible1.

A. Evaluating Security: Twitter-Bot Detection

In this section, we evaluate the security of an ML-based
Twitter-bot detector. First, we show how to use the graphical
framework to compute adversarial robustness as the minimal
cost of building a bot that can evade detection, and compare the
guarantees the framework provides to the standard adversarial
robustness measures. Second, we evaluate the efficiency and
optimality of our attacks. At the end of this section, we discuss
the implications of our assumptions when the framework is
used as a security evaluation tool.

As in our toy example, we assume the adversary starts with a
bot account and aims to find the minimum transformation that
make the model classify the account as human. They define a
transformation graph such that any chain of transformations
results in a feasible account, runs the graph search to find a
minimal-cost example, and replicates the transformations on
their bot account to evade the classifier.

Note that, as opposed to adversarial examples on images
where the perturbations added by the adversary may change
the content of the image to the point where it changes its class,
in our setting, a bot account will keep being a bot account
regardless of the transformations.

1) Twitter-Bot Detector: We use a linear model as the target
classifier that classifies an account as a “bot” or “not bot”. In
particular, we use L2-regularized logistic regression, as the
use of a linear model enables us to compute the exact value
of the heuristic efficiently (see Section III-B). The decision
threshold of the classifier is standard: d = 0.5. We use 5-
fold cross-validation on the training set (see below) to pick
the L2 regularization parameter of the logistic regression (set
to 1.9). Although simple, this classifier yields an accuracy
of 88% (random baseline is 65%) and performs on par with
an SVM with an RBF kernel, and better than some neural
network architectures (see Section IV-A4). Hence, we consider
the regression to be a realistic choice in our setting.

a) Dataset: We use the dataset for Twitter bot classi-
fication by Gilani et al. [54]. Each example in this dataset
represents aggregated information about a Twitter account in
April of 2016. Concretely, it has the following features: the
number of tweets, retweets, favourites, lists, and replies, the
average number of URLs, the size of attached content, average

1[Link to the code anonymized]
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TABLE II: Features from the Twitter bot classification dataset
by Gilani et al. [54]

Feature Column name Type

Number of tweets user_tweeted Integer
Number of retweets user_retweeted Integer
Number of replies user_replied Integer
Age of account, days age_of_account_in_days Integer
Total number of URLs in tweets urls_count Integer
Number of favourites (normalized) user_favourited Float
Number of lists (normalized) lists_per_user Float
Average number of likes per tweet likes_per_tweet Float
Average number of retweets per tweet retweets_per_tweet Float
Size of CDN content, kB cdn_content_in_kb Float
Apps used to post the tweets source_identity Set
Total number of apps used sources_count Integer
Followers-to-friends ratio† follower_friend_ratio Float
Favourites-to-tweets ratio† favourite_tweet_ratio Float
Average cumulative tweet frequency† tweet_frequency Float

† We have dropped this feature from the dataset, since the effect of
transformations on it cannot be computed without having original tweets.
We were not able to obtain the original dataset of the tweets for compliance
reasons.

likes and retweets per tweet, and the list of apps that were
used to post tweets (see Table II).

Accounts are human-labeled as bots or humans. The original
dataset is split into several bands by the number of followers.
We report the results for the 1,289 accounts with under 1,000
followers; more popular accounts result in similar behavior. We
randomly split the dataset into training and test sets, containing
1160 and 129 accounts or, respectively, 90% and 10% samples.
We generate adversarial examples for the 41 accounts in the
test set that are classified as bots by the target classifier.

b) Feature Processing: Almost all the features in the
dataset are numeric (e.g., size of attached content). We use
quantile-based bucketization to distribute them into buckets
that correspond to quantiles in the training dataset. In our
experiments, we use 20 buckets, which offers best performance
in a grid search measuring 5-fold cross-validation accuracy on
the training set. After bucketization, we one-hot encode the
features.

The only non-numerical feature is the list of apps that were
used to post the tweets. We encode it as follows. For each of
the six apps in the dataset, we use two bits: if the app was
used by the account we set the first bit, and if not, we set the
second bit.

2) Security Evaluation: Here, we evaluate the security of
the bot detector using minimal adversarial costs as the measure
of adversarial robustness.

a) The Adversary’s Goals: As mentioned in Section II-B1,
the minimal adversarial costs depend on the adversary’s
definition of “fooling”. To illustrate how the framework can
accommodate different goals, we simulate two attack settings.
First, a basic attack, in which the adversary’s goal is to find
any adversarial examples that flip the decision of the classifier
(l = d = 0.5). Second, a high-confidence attack, in which
the adversary’s goal is to find adversarial examples that are
classified as “not bot” with at least 75% confidence (l = 0.75).

b) The Adversary’s Capabilities: Transformation Graph
and Cost: For this evaluation, we assume that the adversary
is capable of changing all account features, and the cost of
an adversarial example is the number of changes required

Number of tweets: few
Age of account: medium

Number of tweets: medium
Age of account: medium

Number of tweets: few
Age of account: new

...

Number of tweets: medium
Age of account: new

Number of tweets: medium
Age of account: > 1 year

22

22 2

Fig. 2: Sketch of the transformation graph for simplified Twitter
accounts. Italics denote a feature value that differs from the
initial example. The edge costs are constant and equal to the L1

distance between the feature vectors representing the accounts.

to transform an initial bot account into that example. This
adversarial cost model is similar to the state of the art in
adversarial ML (see Section V-A). In Section IV-A4, we discuss
a different model in which the adversary is constrained by the
number of features that they can influence, and the cost is not
measured in the number of changes, but in the actual dollar
cost of performing transformations.

We build the transformation graph by defining atomic
transformations that change only one feature value. For
each bucketed feature we define two atomic transformations:
increasing the feature value so that it moves one bucket up,
and decreasing the feature value so that it moves one bucket
down. For the buckets in the extremes, only one transformation
is possible. For the list of apps feature, we define one
transformation per app: flipping the bits that represent whether
the app was used or not. Then, all possible modifications of an
initial example, including those that change multiple features,
can be represented as chains of atomic transformations: paths
in the graph. For example, a modification that changes two
features needs at least two atomic transformations: a path with
two edges.

We define the edge costs to be the L1 distance between
feature vectors before and after a transformation. Given the
one-hot encoding, this means that each atomic transformation
in our graph has a constant cost of 2 (one bit is set to zero, and
another bit to one). Such a representation has two advantages.
First, the path cost can be easily related to the number of
changes needed to evade the classifier: it suffices to divide the
path cost by two. Second, because the edge cost is a norm-
induced metric, we can use A∗ with admissible heuristic by
Statement III.1. Figure 2 illustrates an example transformation
graph for simplified accounts.

Note that the L1 distance between two arbitrary feature
vectors does not represent the number of changes between
them. We are able to represent the number of changes through
the structure of the transformation graph.

c) Results: We run A∗ search on the transformation graph
to find adversarial examples. For the basic attack, i.e., when
the adversary wants to find an example that flips the decision
regardless of the confidence, on average only 2.2 (s.d. 1.6)
feature changes suffice to flip the decision of the target model.
To obtain adversarial examples with high confidence (75%), the
adversary needs on average 3.9 (s.d. 2.7) changes. We report
some examples of adversarial example accounts in Table VI
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(Appendix C).
Next, we compare the minimal adversarial cost of adversarial

examples as a security measure to the standard notion of
adversarial robustness over continuous S = Rm (as in
Equation 5). We show in Figure 3 the distribution of the values
of both measures for the basic and high-confidence attacks.
We see that the MAC values from our method are up to 26×
higher than adversarial robustness over the unconstrained L1

space in the case of the basic attack, and up to 486× higher
in the case of the high-confidence attack.

This means that the continuous domain robustness measure
applied to a discrete domain results in overly pessimistic
adversarial cost estimates, that an adversary cannot achieve
because of inherent domain constraints. Our approach produces
a more precise robustness measure, tailored to the concrete
domain constraints and the adversary’s capabilities.

3) Performance Evaluation: Here, we study the trade-off
between being able to run the graph search efficiently and the
optimality guarantees of the obtained MAC values. We consider
the following algorithms: uniform-cost search (UCS), plain A∗,
and ε-bounded relaxations of A∗ with ε = {2, 3, 5, 10} (see
Section III-B3).

a) Runtime: Figure 4 shows the number of expansions
(left), as well as the runtime (right), needed to find adversarial
examples that flip the detector in the basic attack. We find
that A∗ expands significantly fewer nodes than UCS (up to
32× fewer), showing that our admissible heuristic is indeed
useful for efficiently finding MAC adversarial examples in the
search space. Relaxing the optimality requirement by increasing
the ε weight speeds up the search even more. For instance,
ε = 5 decreases runtime by three orders of magnitude, and still
ensures that the minimal cost is at most five times lower than
the cost of the found adversarial example. We also observe
that in some cases UCS performs better than A∗ in terms of
the runtime, even though A∗ expands fewer nodes. We believe
that this is an artifact of our Python implementation, which
could be solved with a more efficient implementation.

We observe similar results for the high-confidence attack
(Figure 5). High-confidence adversarial examples require more
transformations, hence, the search takes up to 100× more
runtime than for the basic attack. Still, A∗ performs significantly
better than UCS, expanding 2–31× fewer nodes.

b) Speed vs. Optimality Trade-Off: We saw that ε-
bounded relaxations can drastically decrase the search runtime.
We empirically assess by how much this speedup hurts the
optimality of obtained adversarial examples. To evaluate this,
we compute the increase in costs of adversarial examples found
with ε-weighted A∗ over the optimal adversarial examples
found with plain A∗. We discover that the upper bound on sub-
optimality from ε-weighted A∗ is extremely pessimistic (recall
that ε-weighting guarantees that the found adversarial examples
have at most ε times higher cost than the MAC). In practice,
for the tested values of ε, all adversarial examples found
in the basic attack incur minimal cost in our transformation
graph, and only few high-confidence adversarial examples have
costs at most 1.2× higher than the MAC (see Figure 6). We
conclude that for this setting, using ε-weighting can bring huge
performance benefits at no cost.

c) Heuristics Comparison: Up to this point, we used L1

distance as an edge weight, and the corresponding L1-based
heuristic in the search. Here, we investigate if other heuristics
provide better performance. To maintain the optimality of A∗,
the edge weights have to change accordingly. Given that we
consider that all transformations have the same cost, a uniform
change in the weights results in an equivalent transformation
graph. The difference lies in the multiplicative factor used to
recover the number of required changes from the path cost.

We run the basic attack using L1, L2, and L∞ edge weights,
i.e., 2 for L1,

√
2 for L2, and 1 for L∞; and the corresponding

heuristics, that we denote as r1, r2, r∞. We compare the
performance of A∗ for these edge costs against each other
and against two baselines. First, UCS, which expands the
same number of graph nodes for all three edge cost models. It
represents the worst case in terms of performance, but outputs
provably minimal-cost adversarial examples. Second, we run
“random search” 10 times. By random search we mean A∗ with
a heuristic that outputs random numbers between 0 and 2 on
the transformation graph with L1 edge costs. This algorithm
is efficient, but does not provide any optimality guarantees.

We show the result in Figure 7 (left). Except for adversarial
examples that lie deeper in the graph, all admissible heuristics
find solutions faster than the random search. We also see that
the random search outputs adversarial examples that have costs
up to 11 times the MAC obtained with A∗.

Even though both L2 and L∞ heuristics enable the algorithm
to explore fewer graph nodes than UCS, in practice they take the
same time (see Figure 7, right) This is because each heuristic
exploration is quite costly in terms of computation time. The
edge weights for L2 and L∞ (

√
2 and 1, respectively) are

comparatively high compared to the values of the heuristics
(on our dataset r2 is on average 0.52 and r∞ is on average
0.059). Hence, A∗ often needs to explore all nodes of the
same cost before it can proceed to transformations that carry a
higher cost, essentially degenerating into UCS. On the contrary,
L1 heuristics perform consistently better, as r1 is on average
2.18, higher than 2 (the L1 edge cost). We note that this result
may not necessarily hold for other transformation graphs with
different cost models.

4) Applicability Discussion: In the previous experiments,
we assumed that the target model is linear, that the adversarial
cost is proportional to the number of feature changes, and
that the adversary has white-box knowledge and uses optimal
algorithms. In this section, we explore other options for each of
these assumptions and, in Section IV-B, we conduct a thorough
evaluation of a setting in which none of them hold.

a) Non-Linear Models: When the target model is linear,
we can efficiently compute the exact value of the the admissible
heuristic from Equation 6. Even though a linear model is a
sensible choice in our setting, non-linear models can often
appear in other security-critical settings. Mounting an A∗-based
attack against a non-linear target model, however, requires
costly methods to compute the heuristic (see Section III-B).

One way to overcome this issue is linearizing the non-linear
model using a first-order Taylor expansion, and then using the
heuristic r for linear models (see Appendix B for a formal
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Fig. 3: Pointwise adversarial robustness measured as minimal-cost adversarial examples computed using the transformation
graph G, and pointwise robustness in L1 space. Left: basic attack. Right: high-confidence attack. (Notice the different y-axes)
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Fig. 4: Basic attack performance performance. Left: node expansions. Right: runtime in seconds. (y-axes are logarithmic)
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Fig. 5: High-confidence attack performance. Left: node expansions. Right: runtime in seconds. (y-axes are logarithmic)
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Fig. 6: High-confidence attack: increase in cost over MAC of
adversarial examples found using ε-weighted A∗.

derivation):

r(x) ≈ |f(x)|
‖∇xf(x)‖∗ (8)

We note that, as this approximation can overestimate r(x),
it cannot serve as an admissible heuristic without additional
assumptions on f .

We empirically evaluate this heuristic by running the attack
against an SVM with the RBF kernel trained on the dataset
with discretization parameter set to 20 (88% accuracy on the
test set). Using UCS to obtain the ground-truth minimal-cost
adversarial examples, we find that, even though the heuristic
is approximate, all adversarial examples found with A∗ are
minimal-cost. Moreover, this heuristic allows the graph search
to use significantly fewer graph node expansions than UCS
(Figure 8, left). On the downside, even though the algorithm
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TABLE III: Transferability of minimal-cost adversarial exam-
ples from logistic regression to other models. Columns: model;
Accuracy—model’s accuracy on the test set; Trans. (basic)—
transferability rate of adv. examples aiming to be missclassified
with 50% confidence to this model; Trans. (high)—same, with
75% confidence.

Model Accuracy, % Trans. (basic), % Trans. (high), %

LR 88 — —
NN-A 80 49 84
NN-B 83 38 95
GBDT 87 74 95
SVM-RBF 88 73 100

expands fewer nodes, the overhead of computing the heuristic
(which includes computing the forward gradient of the SVM-
RBF) is high enough that there is no actual improvement in
performance, unless we use ε > 2 weighting (Figure 8, right).
More efficient implementations of the heuristic can result in
better gains.

b) Black-Box Setting: The minimal-cost adversarial ex-
amples, and the robustness guarantees they induce, are specific
to a particular target model. Do other models misclassify these
examples as well? If yes, the attack would not only be effective
in the white-box setting, but also in the black-box setting, where
the adversary does not know the exact architecture and weights
of the target model. Furthermore, there would be no need to
use expensive heuristics for non-linear models.

We check whether the adversarial examples found in the
previous section using A∗ against a logistic regression (LR) are
misclassified by other non-linear models trained on the same
dataset. We choose four ML models representative of typical
architectures: two instantiations of a two-layer fully-connected
ReLU neural network, one with 2000 and 500 neurons (NN-
A), and one with 20 and 10 neurons in the respective layers
(NN-B); gradient-boosted decision tree (GBDT); and an SVM-
RBF. We do not run extensive hyperparameter search to obtain
the best possible performance of these models, but we ensure
that all of them have accuracy greater than 80% (the random
baseline is 65%).

Table III shows the results of the experiment. We see that
the basic minimal-cost adversarial examples (which mostly
have confidence only slightly higher than 50%) transfer to the

other models in at least 38% of the cases and in about 73%
of the cases for GBDT and SVM-RBF. In the high-confidence
setting more than 83% of the adversarial examples transfer to
all models. We conjecture that when the goal is to find any
adversarial examples, the minimal-cost adversarial examples
often exploit a weakness found only in their target model,
and, hence, rarely transfer. When the target confidence level is
higher, the adversarial examples require more transformations
and become similar to non-bots as seen in the training data.
Hence, they are more likely to generalize.

c) Non-Optimal Algorithms: So far we have considered
that the adversary uses algorithms that provide optimality
guarantees: UCS, A∗, ε-weighted A∗. These algorithms are
often expensive. We investigate the performance of less
expensive non-optimal algorithms in our setting using a hill-
climbing modification of A∗ as an example (see Section II-A2).
Regular A∗ needs to keep track of all previously expanded
nodes at any given time. The hill-climbing variation only keeps
the best-scoring node. This significantly improves memory and
computation requirements, but sacrifices the ability of A∗ to
backtrack.

We see in Figure 9 that hill climbing performs significantly
better than UCS and A∗. Furthermore, we find that, in the
basic-attack setting, all adversarial examples found by the hill
climbing incur minimal cost; and in the high-confidence setting
only some are more expensive (at most 1.2× higher than the
minimal cost). We note that these results are on par with
weighted A∗ for ε = 10, with the difference that hill climbing
does not provide any provable guarantees.

d) Realistic Adversarial Costs: Previously, we ensured
that the chosen edge weights allow to use admissible heuristics
in A∗, and assumed that the adversary can modify all features
at the same cost. However, the general graphical framework
and, more importantly, the problems it represents in practice,
are not limited to these transformation costs or such a powerful
adversary.

Here, we show how the graphical approach can accommodate
a more realistic scenario. We constrain the transformation graph
to modify only the features that can be changed with the help
of online services. As of this writing, there exist online services
that charge approximately $2 for ghost-writing a tweet or a
reply; and services that charge approximately $0.025 for a
retweet or a like of a given tweet. Hence, we constrain the
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Fig. 8: Basic attack against a non-linear model (SVM-RBF) using an approximate heuristic. Left: node expansions. Right:
runtime in seconds. (y-axes are logarithmic)
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Fig. 9: Basic attack setting comparison of UCS, A∗, weighted A∗, and hill climbing. Left: node expansions. Right: runtime in
seconds. (y-axes are logarithmic)

adversary to modify only the number of tweets, the number of
replies, the likes per tweet, and the retweets per tweet features.
Moreover, we constrain the adversary to only increase the value
of any transformable feature (e.g., we assume the adversary
can hire someone to write more tweets, but not to delete them).

We set the weights of the edges such that they correspond
to the dollar costs of the atomic transformations. This cost
is estimated as follows. We compute the difference between
the previous value of the feature and the lowest endpoint
of the bucket in which the new feature value ends up. We
then multiply this difference (the number of tweets, replies,
incoming likes, or incoming retweets that need to be created or
added) by the respective price in the mentioned online services.
As a result, path costs in such a graph are lower bounds on
the dollar cost the adversary has to pay to perform a sequence
of transformations. Hence, these costs can be used to make
informed risk analysis regarding the security of a model.

Table IV shows the results of running UCS to obtain
MAC values for the basic and high-confidence attacks on this
transformation graph. Because of the restricted transformations,
we can find adversarial examples only for 70% and 19% of
the initial examples, for the basic and the high-confidence
setting, respectively. In particular, we observe that if an initial
example is classified as “bot” with high enough confidence
(approximately 80% for the basic attack), it is unlikely that
we can find a corresponding adversarial example.

TABLE IV: Dollar cost of adversarial examples against bot
detection. Columns: Attack—attack setting: required confidence
level for adversarial examples; Exists—proportion of initial
examples for which an adversarial example exists; Minimal
adversarial cost—minimum, average, and maximum values of
minimal adversarial costs for the part of the test dataset for
which adversarial examples exist.

Minimal adversarial cost

Attack Exists min. avg. max.

Basic (50%) 70% $0.02 $35.7 $281.6
High (75%) 19% $3.8 $57.6 $218.2

Even though for simplicity we used UCS, the edge weights
could be expressed as a weighted norm, e.g., ‖A(x− x′)‖1 for
some positive-definite weight matrix A encoding the costs of
the transformations. This means that it is possible to derive an
admissible heuristic and employ A∗. We leave the derivation
of such heuristic as an open line of research.

B. Building Defenses: Website Fingerprinting

In the previous section, we considered a setting in which the
adversary’s knowledge is white-box. This assumption, however,
does not always hold in practice. When the access to the ML
model is black-box, the adversary cannot use the admissible
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heuristic to efficiently obtain minimal-cost adversarial examples
using A∗. We show that even in this setting the graphical
framework is a useful tool for finding adversarial examples in
constrained domains.

In this section, we also change the adversarial perspective.
We consider a scenario in which the ML model is at the
core of a privacy-invasive system and the entity deploying
adversarial examples is a target of this system. Therefore, the
model becomes the adversary, and adversarial examples become
defenses.

Concretely, we take the case of website fingerprinting (WF),
an attack in which a network adversary attempts to infer which
website a user is visiting by only looking at encrypted network
traffic [31, 32], often using machine learning [33, 55–58]. This
attack is mostly considered a threat to users of anonymous
communication networks such as Tor [59]. However, as the
encrypted SNI proposal [60] becomes standardized within
TLS 1.3 [61]—hiding the destination of encrypted HTTPS
traffic from network observers—this attack becomes a privacy
threat to all Internet users. To counter the attack, existing ad-
hoc defenses transform the traffic to reduce the accuracy of
the ML classifier [33–37].

We first show how the graphical framework can be used
as a systematic tool for designing traffic modifications that
defend users against a WF adversary. We then show how the
defenses produced by our method can be used as a baseline to
evaluate both the effectiveness (ability to fool a classifier) and
efficiency (incurred overhead) of existing defenses.

1) Website-Fingerprinting Attack: We consider a WF ad-
versary that takes as input a network trace, i.e., a sequence
of incoming (from server to client) and outgoing (from client
to server) encrypted packets, and outputs a binary guess of
whether the user is visiting a website that is in the monitored
set or not. For instance, this could be a censorship adversary
that wants to know if the visited website is in a list of censored
websites in order to stop the connection.

We simulate a WF adversary that uses the classifier by
Panchenko et al. [33], an SVM with an RBF kernel trained on
CUMUL features. For a given trace, a CUMUL feature vector
contains the total incoming and outgoing packet counts, and
100 interpolated cumulative packet counts. We refer the reader
to the original paper for the details on computing the vector.

a) Dataset: We use the dataset of Tor network traces
collected by Wang et al. [55]. This dataset contains 18,004
traces, half of them coming from a simulated monitored set
compiled from 90 websites censored in China, the UK, and
Saudi Arabia, and half coming from a non-monitored set of
5,000 other popular websites. The average trace length is 2,155.

We randomly split the dataset into 90% training and 10%
testing subsets of 15,397 and 1,711 traces, respectively. We
use these splits to train and test the target WF classifier. To
keep the running time of our experiments reasonable, we find
adversarial examples only for traces with less than 2000 packets
that are classified as being in the monitored set. There are 577
such traces, with an average length of 1750 packets.

The CUMUL classifier performs remarkably well on our
test dataset, with an accuracy of 97.8% (the random baseline

is 50%). Thus, we consider it is a good example to illustrate
the potential of our framework.

2) Building Defenses:
a) The Defender’s Goals: The goal of the defender is

to modify monitored traces such that they are misclassified
as non-monitored by the WF classifier. These modifications
can be of two kinds: adding dummy packets and adding delay.
Removing packets is not possible without affecting the content
of the page, and the delay is dependent on the network and
cannot be decreased from an endpoint. The previous work
(e.g., Panchenko et al. [33]) has noted that perturbing timing
information is not as important to classification as the volume
of packets. Hence, even though adding delay is possible within
the graphical framework, we consider that our defense only
adds dummy packets. As in the previous works, we assume
that dummy packets are filtered by the client and the server
and do not affect the application layer.

Adding dummy packets has a cost in terms of bandwidth
and delay (routers have to process more packets). Therefore,
the defender wants to introduce as few packets as possible. In
terms of confidence level l, we consider only the case where
the defender wants to flip the classifier decision (l = d = 0.5).
Finding higher confidence adversarial examples is possible at
the cost of running a longer search.

b) The Defender’s Capabilities: Transformation Graph
and Cost: For a given trace we define the following trans-
formations: add one dummy outgoing packet, or one dummy
incoming packet, between any two existing packets in the trace.
This means that each node in the transformation graph is a copy
of its parent trace with an added dummy packet. We assign
every transformation a cost equal to one, thus representing the
added packet. Path costs in this graph are equal to the number
of added packets.

c) Heuristic and Search Algorithms: Recall that CUMUL
feature processing includes an interpolation step. Because of
the interpolation part of a CUMUL feature vector, the costs
in our transformation graph can not be trivially expressed as
norm-induced distances between the feature vectors. Hence,
we cannot use the admissible heuristic from Equation 6, or its
approximated version. Instead, we use the following confidence-
based heuristic, similar to the heuristics used in other attacks
in discrete domains (e.g., by Gao et al. [22]):

ht(x) =


+f(x), t = 0

−f(x), t = 1

−∞, F (x) = t

The value of this heuristic becomes lower as the confidence
of the WF classifier for the target class (non-monitored in our
case) becomes higher. Note that this heuristic does not require
any knowledge of the classifier, only the ability to query f(x).

As in this case we cannot use optimal algorithms, we
implement the hill climbing variation of the greedy best-first
search (score(x) = h(x) for its speed, see Section II-A2). We
also limit the number of iterations of the algorithm to 5,000
in order to keep down the runtime of our experiments. Our
results show that this is sufficient to find adversarial examples
in 100% of the cases.
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We also run a random search, i.e., we follow a random path
in the graph until an adversarial example is found, to obtain a
baseline in terms of cost and runtime. We run this algorithm
three times for each trace with different random seeds.

d) Results: Hill climbing with the confidence-based
heuristic finds adversarial traces in 100% of the cases, with
an average time to find an adversarial example of 0.8 seconds.
Random search succeeds in slightly less than 100%, with an
average time of about 0.3 seconds. As we discuss below, the
results differ in the overhead required to find an adversarial
example.

3) Comparing Defenses: Here, we use minimal-cost adver-
sarial examples for website fingerprinting to evaluate existing
ad-hoc WF defenses: Decoy pages [33], BuFLO [34], CS
BuFLO [36], and adaptive padding (WTF-PAD) [37]. We use
the implementations of Decoy pages and BuFLO by Wang,2

CS BuFLO by Cherubin [62],3 and WTF-PAD by Juárez et al.
[37].4 Concretely, we measure the overhead in terms of (1) the
number of dummy packets added, and (2) the success rates
of the defenses, i.e., the percentage of traces for which they
successfully evade the classifier.

We evaluate the efficiency by measuring the raw overhead in
terms of added packets (see Figure 10, left). The existing
defenses add up to 3000 dummy packets. Unexpectedly,
BuFLO, which is deliberately inefficient, is the most expensive
defense. On the contrary, adversarial examples add on average
12 dummy packets, and at most 52.

In terms of relative overhead, i.e., how many more packets
the defenses add, compared to the adversarial examples found
using hill climbing, all defenses and random search require
significantly more bandwidth (see Figure 10, center). In five
cases, CS BuFLO and WTF-PAD add fewer packets, but in
those cases the defenses do not succeed in evading the classifier.

We then analyze the defenses’ success rates in the light of
the overhead they impose. The graph search yields a 100%
success rate, whereas the existing defenses (aside from BuFLO)
only succeed in 70%—80% of the cases (Figure 10, right).
Also, as it can be seen in Figure 10 (center), increasing the
number of packets is not a guarantee of success. We see how
for all defenses but BuFLO some cases fail even with hundreds
of overhead packets. A closer analysis shows that CS BuFLO
and WTF-PAD often fail to defend shorter traces (under 1000
packets), whereas they can successfully defend the longer ones
(see Figure 11 in Appendix C for illustration).

This hints that the ad-hoc defenses use the dummies in an
inefficient way, and there is a significant room for improvement.
The adversarial examples found with hill climbing present a
tight upper bound on the minimal cost of any successful defense.
Hence, we hope that our graphical framework can serve as a
baseline to evaluate the efficiency of future defenses, and guide
the design of effective website-fingerprinting countermeasures.

4) Applicability Discussion: In this section, we apply the
graphical framework to a setting with no white-box knowledge,
against a non-linear classifier, by using non-optimal algorithms,

2http://home.cse.ust.hk/~taow/wf/
3https://github.com/gchers/wfes
4https://github.com/wtfpad/wtfpad

and show that the framework is still useful when none of the
assumptions from Section IV-A hold.

We do not evaluate the transferability of obtained adversarial
examples to other classifiers. The main reason is that the
state-of-the-art WF classifiers are based on deep learning [57,
58], thus require datasets larger than the one we use in our
comparison. Although we leave the transferability evaluation
for future work, we expect that the results would be qualitatively
similar to those in the Twitter-bot case (see Section IV-A4).

V. RELATED WORK

We overview existing attacks in discrete domains and
highlight their differences with respect to our work.

a) Discretized Image Domain: Papernot et al. propose the
Jacobian saliency map approach (JSMA) [4] to find adversarial
images. JSMA is a greedy white-box attack that transforms
images by increasing or decreasing pixel intensity to maximize
saliency, that is computed using the forward gradient of the
target model. This attack is a basis for attacks in other discrete
domains [16, 20], as we discuss below.

b) Text Domain: Multiple works study evasion attacks
against text classifiers [15, 19, 21, 22, 24, 63–65]. Recent
attacks can be divided into three groups: those employing a
hill-climbing algorithm over the set of possible transformations
of an initial piece of text [19, 21, 22, 64]; those that greedily
optimize the forward gradient-based heuristic but run beam
search [15]; and those that use an evolutionary algorithm [65].

c) Malware Domain: Several works explore evasion
attacks for malware, either adapting JSMA [20], applying
forward gradient-based heuristics [17], using a black-box hill-
climbing algorithm over a set of feasible transformations [66],
or using a black-box evolutionary algorithm [67].

d) Protecting Users: Finally, some works use adversarial
examples as means to protect users. Jia and Gong adapt JSMA
to modify user-item relationship vectors in the context of
recommendation systems. Overdorf et al. use exhaustive search
to find adversarial examples that counter anti-social effects of
machine learning.

A. Comparison to Our Work

Our framework can be seen as a generalization of most of the
attacks mentioned previously. Moreover, it can encode arbitrary
adversarial costs, and can be configured to output minimal-cost
adversarial examples using A∗ search. We note that in parallel
to our work, Wu et al. also used A∗ and randomized tree search
to obtain bounds on robustness of neural networks [68]. Their
work, however, only considers the setting of image recognition.

Dalvi et al. [63] have used integer linear programming to
find approximate minimal-cost adversarial examples against a
Naïve Bayes classifier. Our graphical framework enables us to
consider arbitrary transformations and cost models and to find
minimal-cost adversarial examples for any non-linear classifier
for which adversarial robustness in a continuous domain can
be computed.

Except for the method by Dalvi et al. and the attacks
based on evolutionary algorithms, all of the attacks above
can be instantiated in our graphical framework (see Table V in
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Fig. 10: Left: number of added packets by WF defenses and adversarial examples (x-axis is logarithmic). Center: overhead of WF
defenses compared to the number of packets added by adversarial examples found with hill climbing (x-axis is bi-symmetrically
logarithmic). Right: success rates of WF defenses and adversarial examples against the SVM-RBF classifier.

Appendix C for a summary of such instantiations). The attacks
implicitly define a transformation graph by specifying a set
of domain-specific transformations (e.g., word insertions for
text) that define the graph. The cost of transformations can be
equal to the number of such transformations (e.g., [19, 21]),
or, equivalently, to the Lp distance between feature vectors
interpreted as the number of transformations (e.g., [16, 20]).

The attacks can be seen as special cases of running the BF∗

search algorithm (see Section II-A2) over a transformation
graph. They differ in adversarial knowledge assumptions (white-
box or black-box), transformation graphs, adversarial cost
models, and the choice of the scoring function and priority-
queue capacity that defines the instantiation of BF∗.

Most of the attacks (e.g., [16, 19–21]) run a hill-climbing
search over the transformation graph. They maximize a heuristic
either based on the forward gradient of the model (in the white-
box setting where the adversary can compute the gradient), or
on the confidence (in the black-box setting where the adversary
can only query the model). Ebrahimi et al. [15] use beam search
instead of hill climbing, Kulynych [69] uses an instance of
backtracking best-first search, and Overdorf et al. [23] use an
exhaustive search over the space of feasible transformations,
equivalent to UCS.

VI. CONCLUSIONS

In this paper, we proposed a graphical framework for for-
malizing evasion attacks in discrete domains. This framework
casts attacks as search over a graph of valid transformations
of an initial example. It generalizes many proposed attacks in
various discrete domains, and offers additional benefits.

First, as a formalization, it enables us to define arbitrary
adversarial costs and to choose search algorithms from the
vast literature on graph search, whereas the previous attacks
often use Lp norms as costs and mostly focus on hill-climbing
strategies.

Second, we show that when it is possible to compute
adversarial robustness in a continuous domain, this robustness
measure can be used as a heuristic to efficiently explore
a discrete domain. Thus, an adversary with the white-box
knowledge can use A∗ search to obtain adversarial examples
that incur minimal adversarial cost. This enables us to provably
evaluate the adversarial robustness of a classifier given the
domain constraints and adversary’s capabilities.

Third, the versatility of our framework to model transfor-
mations and their costs independently of the ML model under
attack make it suitable to tackle both security and privacy
problems. As examples, we showed how it can be used to
evaluate the adversarial robustness of a Twitter-bot classifier,
and to evaluate the cost-effectiveness of privacy defenses
against a website-fingerprinting classifier.
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APPENDIX A
PROOF OF STATEMENT III.1

Observe that if F (x) = t, the heuristic r(x) = 0, and
hence is trivially admissible. Indeed, it cannot overestimate
CG(x,x∗) due to the fact that ω(a, b) ≥ 0 and CG(a, b) ≥ 0
for any a, b ∈ V .

It is therefore sufficient to show that if F (x) 6= t, the lower
bound on adversarial robustness at x over S never overestimates
CG(x,x∗):

η(x′) ≤ CG(x,x∗) (9)

The following sequence holds:

r(x) ≤ ‖x− x∗‖
≤ CG(x,x∗)

The first inequality is by definition of r(x) (see Equation 5).
Indeed, since r(x) is a norm of the smallest adversarial
perturbation ∆ over S, ∆ is smaller than the distance from
x to any other x′ ∈ X ⊆ S that also flips the decision of the
target classifier:

r(x) = ‖∆‖ ≤ ‖x− x′‖ (for any x′ ∈ X s.t. F (x′) = t)

By Equation 1, CG(x,x∗) is a path cost for some path:

CG(x,x∗) = W (x→ v1 → . . .→ vn−1 → x∗)

= ‖x− v1‖+

n−2∑
i=1

‖vi − vi+1‖+ ‖vn−1 − x∗‖

By triangle property of the norm, the second inequality
holds:

‖x− x∗‖ ≤ ‖x− v1‖+

n−2∑
i=1

‖vi − vi+1‖+ ‖vn−1 − x∗‖

= CG(x,x∗)

Hence, r(x) ≤ CG(x,x∗), which implies Equation 9, and
concludes the proof.

APPENDIX B
DERIVATION OF THE HEURISTIC APPROXIMATION FOR

NON-LINEAR MODELS

W.l.o.g, assume that the decision threshold of the target
classifier is θ = 0. For an initial x ∈ Rm, the smallest
adversarial perturbation ∆ ∈ Rm puts x + ∆ on the decision
boundary: f(x + ∆) = θ = 0.

Let f̃(x + ∆) be the first-order Taylor approximation of f
at x + ∆:

f̃(x + ∆) = f(x) +∇xf(x) ·∆
We want to estimate ∆ assuming f̃(x+∆) = f(x+∆) = 0.

By Hölder’s inequality,

|f(x)| = |∇xf(x) ·∆| ≤ ‖∇xf(x)‖∗ ‖∆‖
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Hence, assuming that f̃(x + ∆) = 0, the p-norm of the
smallest perturbation has the following lower bound:

‖∆‖ ≥ |f(x)|
‖∇xf(x)‖∗

We can use the right-hand side as an approximation of the
lower bound on r(x).

Note that for a linear model f(x) = w ·x+ b the first-order
approximation f̃(x + ∆) is exact. Hence, the bound implies
Equation 7:

‖∆‖ ≥ |f(x)|
‖w‖∗

APPENDIX C
SUPPLEMENTARY FIGURES

The rest of the document contains supplementary figures.
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Fig. 11: Overhead of WF defenses compared to adversarial examples found with hill-climbing search (x-axis is bi-symmetrically
logarithmic)


